Sterile neutrinos as dark matter

- dark matter candidate: sterile neutrino, $m=2-20\,{\rm keV}$
- Pulsar kicks can be explained by neutrino oscillations
- Constraints and searches

[AK, Segrè, Fuller, Pascoli, Mocioiu, D'Olivo, et al.]

Dark matter

The only data at variance with the Standard Model

The evidence for dark matter is very strong:

- galactic rotation curves cannot be explained by the disk alone
- cosmic microwave background radiation
- gravitational lensing of background galaxies by clusters is so strong that it requires a significant dark matter component.
- clusters are filled with hot X-ray emitting intergalactic gas (without dark matter, this gas would dissipate quickly).

KIAS '05

Dark matter: what is it?

Dark matter: what is it?

Can make guesses based on...

- ...compelling theoretical ideas
- ...simplicity
- ...observational clues

KIAS '05

KIAS '05

Dark matter: beautiful theoretical ideas

SUSY is an appealing theoretical idea

KIAS '05

Dark matter: beautiful theoretical ideas

SUSY is an appealing theoretical idea

KIAS '05

Dark matter: beautiful theoretical ideas

SUSY is an appealing theoretical idea

Dark matter: beautiful theoretical ideas

SUSY is an appealing theoretical idea

Dark matter comes as part of the package as one of the following:

- Neutralino
- Gravitino (produced in freeze-out, or non-thermally)
- Axino
- SUSY Q-balls

Theoretically motivated!! By no means minimal. No experimental evidence so far.

Dark matter: a simple (minimalist) solution

Need **one** particle \Rightarrow add just **one** particle If a fermion, must be gauge singlet (anomalies) Interactions only through mixing with neutrinos

 \Rightarrow sterile neutrino

Sterile neutrinos with a small mixing to active neutrinos

$$\begin{cases} |\nu_1\rangle = \cos\theta |\nu_e\rangle - \sin\theta |\nu_s\rangle \\ |\nu_2\rangle = \sin\theta |\nu_e\rangle + \cos\theta |\nu_s\rangle \end{cases}$$
(1)

The almost-sterile neutrino, $|\nu_2\rangle$ was never in equilibrium. Production of ν_2 could take place through oscillations.

The coupling of ν_2 to weak currents is also suppressed, and $\sigma \propto \sin^2 \theta$. The probability of $\nu_e \to \nu_s$ conversion in presence of matter is

$$\langle P_{\rm m}
angle = rac{1}{2} \left[1 + \left(rac{\lambda_{
m osc}}{2\lambda_{
m s}}
ight)^2
ight]^{-1} \sin^2 2 heta_m,$$
 (2)

where $\lambda_{\rm osc}$ is the oscillation length, and $\lambda_{\rm s}$ is the scattering length.

KIAS '05

Sterile neutrinos in cosmology: dark matter

Sterile neutrinos are produced in primordial plasma through oscillations. The mixing angle is suppressed at high temperature:

$$\sin^{2} 2\theta_{m} = \frac{(\Delta m^{2}/2p)^{2} \sin^{2} 2\theta}{(\Delta m^{2}/2p)^{2} \sin^{2} 2\theta + (\Delta m^{2}/2p \cos 2\theta - V(T))^{2}},$$
(3)

KIAS '05

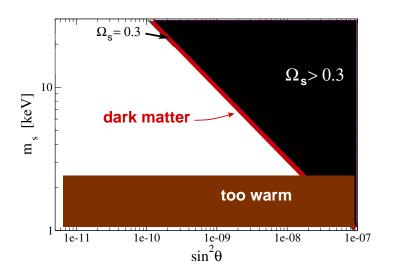
For small angles,

$$\sin 2\theta_m \approx \frac{\sin 2\theta}{1 + 0.79 \times 10^{-13} (T/MeV)^6 (\text{keV}^2/\Delta m^2)}$$
(4)

Production of sterile neutrinos peaks at temperature

$$T_{
m max} = 130\,{
m MeV}\,\left(rac{\Delta m^2}{
m keV^2}
ight)^{1/6}$$

The resulting density of relic sterile neutrinos in conventional cosmology, in the absence of a large lepton asymmetry:

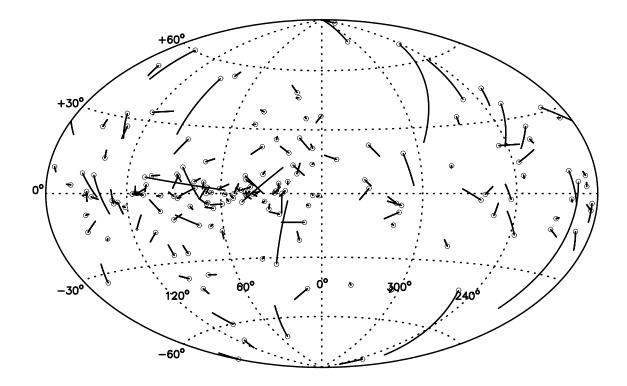

$$\Omega_{
u_2} \sim 0.3 \left(rac{\sin^2 2 heta}{10^{-8}}
ight) \left(rac{m_s}{
m keV}
ight)^2$$

[Dodelson, Widrow; Dolgov, Hansen; Fuller, Shi; Abazajian, Fuller, Patel]

The resulting density of relic sterile neutrinos in conventional cosmology, in the absence of a large lepton asymmetry:

$$\Omega_{
u_2} \sim 0.3 \left(rac{\sin^2 2 heta}{10^{-8}}
ight) \left(rac{m_s}{
m keV}
ight)^2$$

Lyman- α forest clouds show significant structure on small scales. Dark matter must be cold enough to preserve this structure.


KIAS '05

Observational hint: the pulsar velocities

Observational hint: the pulsar velocities

Pulsars have large velocities, $\langle v \rangle \approx 250 - 450 \text{ km/s}$. [Cordes *et al.*; Hansen, Phinney; Kulkarni *et al.*; Lyne *et al.*] A significant population with v > 700 km/s, about 15 % have v > 1000 km/s, up to 1600 km/s. [Arzoumanian *et al.*; Thorsett *et al.*]

KIAS '05

Proposed explanations:

- asymmetric collapse [Shklovskii] (small kick)
- evolution of close binaries [Gott, Gunn, Ostriker] (not enough)
- acceleration by EM radiation [Harrison, Tademaru] (kick small, predicted polarization not observed)
- asymmetry in EW processes that produce neutrinos [Chugai; Dorofeev, Rodinov, Ternov] (asymmetry washed out)
- "cumulative" parity violation [Lai, Qian; Janka] (it's *not* cumulative)

-400

-200

0

x(km)

200

KIAS '05

Asymmetric collapse 400 Oxygen Shell Oxygen Shell Only With Oscillations 500 200 Velocity (km s⁻¹) z(km) -200-500 -400

"...the most extreme asymmetric collapses do not produce final neutron star velocities above 200km/s" [Fryer '03]

400

0.2

0.22

0.24

Time after Collapse (s)

0.26

0.28

Supernova neutrinos

Nuclear reactions in stars lead to a formation of a heavy iron core. When it reaches $M \approx 1.4 M_{\odot}$, the pressure can no longer support gravity. \Rightarrow collapse.

Energy released:

$$\Delta E \sim rac{G_N M_{
m Fe\,\,core}^2}{R} \sim 10^{53} {
m erg}$$

99% of this energy is emitted in neutrinos

KIAS '05

Pulsar kicks from neutrino emission?

Pulsar with $v\sim 500~{\rm km/s}$ has momentum

 $M_{\odot}v \sim 10^{41}~{
m g\,cm/s}$

KIAS '05

Pulsar kicks from neutrino emission?

Pulsar with $v \sim 500 \text{ km/s}$ has momentum

 $M_{\odot}v \sim 10^{41}~{
m g\,cm/s}$

SN energy released: $10^{53}~{\rm erg}$ \Rightarrow in neutrinos. Thus, the total neutrino momentum is

 $P_{
u;\,{
m total}} \sim 10^{43}~{
m g\,cm/s}$

KIAS '05

Pulsar kicks from neutrino emission?

Pulsar with $v \sim 500 \text{ km/s}$ has momentum

 $M_{\odot}v \sim 10^{41}~{
m g\,cm/s}$ SN energy released: $10^{53}~{
m erg}$ \Rightarrow in neutrinos. Thus, the total neutrino momentum is

 $P_{
u;\,{
m total}} \sim 10^{43}~{
m g\,cm/s}$

a 1% asymmetry in the distribution of neutrinos

is sufficient to explain the pulsar kick velocities But what can cause the asymmetry??

KIAS '05

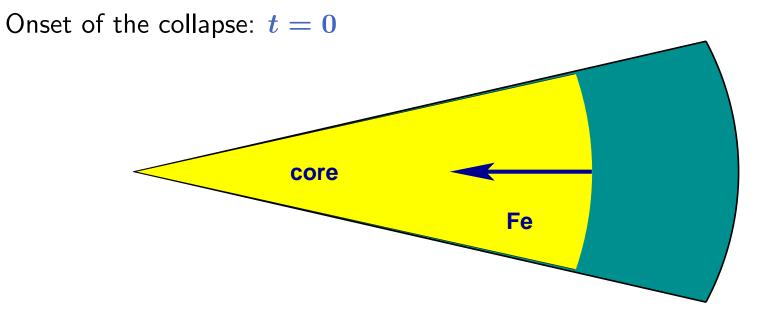
Magnetic field?

Neutron stars have large magnetic fields. A typical pulsar has surface magnetic field $B \sim 10^{12} - 10^{13}$ G.

Recent discovery of *soft gamma repeaters* and their identification as *magnetars*

 \Rightarrow some neutron stars have surface magnetic fields as high as $10^{15} - 10^{16}$ G.

 \Rightarrow magnetic fields inside can be $10^{15} - 10^{16}$ G.

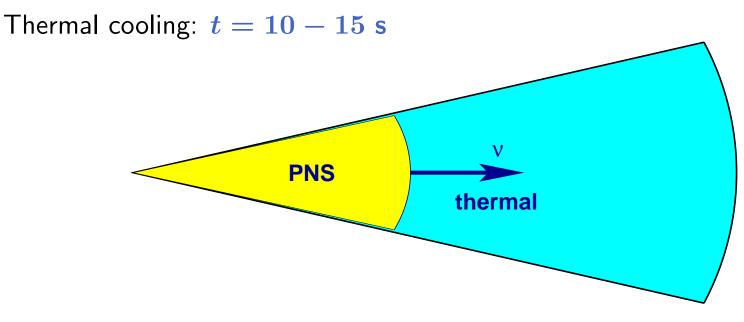

Neutrino magnetic moments are negligible, but the scattering of neutrinos off polarized electrons and nucleons is affected by the magnetic field.

Core collapse supernova

Onset of the collapse: t = 0

KIAS '05

Core collapse supernova


KIAS '05

Core collapse supernova

Shock formation and "neutronization burst": t = 1 - 10 msPNS v burst v burst

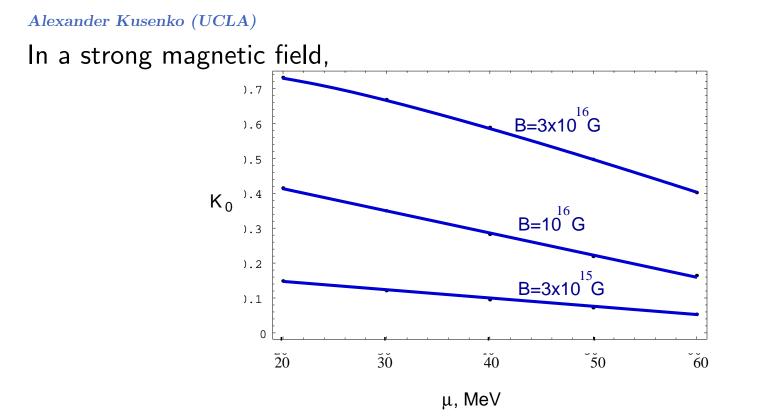
Protoneutron star formed. Neutrinos are trapped. The shock wave breaks up nuclei, and the initial neutrino come out (a few %).

Core collapse supernova

Most of the neutrinos emitted during the cooling stage.

Electroweak processes producing neutrinos (urca),

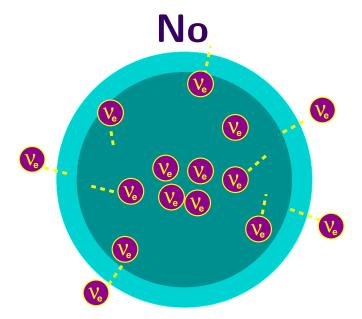
$$p + e^- \rightleftharpoons n + \nu_e$$
 and $n + e^+ \rightleftharpoons p + \bar{\nu}_e$


have an asymmetry in the production cross section, depending on the spin orientation.

$$\sigma(\uparrow e^-,\uparrow
u)
eq \sigma(\uparrow e^-,\downarrow
u)$$

The asymmetry:

$$ilde{\epsilon} = rac{g_{_V}^2 - g_{_A}^2}{g_{_V}^2 + 3g_{_A}^2} k_0 pprox 0.4 \, k_0,$$


where k_0 is the fraction of electrons in the lowest Landau level.

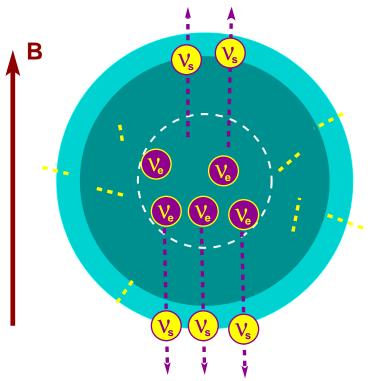
 k_0 is the fraction of electrons in the lowest Landau level. Pulsar kicks from the asymmetric production of neutrinos? [Chugai; Dorofeev, Rodionov, Ternov]

KIAS '05

Can the weak interactions asymmetry cause an anisotropy in the flux of neutrinos due to a large magnetic field?

Neutrinos are trapped at high density.

Can the weak interactions asymmetry cause an anisotropy in the flux of neutrinos due to a large magnetic field?


No

Rescattering washes out the asymmetry [Vilenkin ApJ 451, 700 (1995); AK,Segrè, Vilenkin, PLB 437,359 (1998); Arras,Lai, ApJ 519, 745 (1999)].

In approximate thermal equilibrium the asymmetries in scattering amplitudes do not lead to an anisotropic emission. Only the outer regions, near neutrinospheres, contribute (a negligible amount).

However, if a weaker-interacting <u>sterile neutrino</u> was produced in these processes, the asymmetry would, indeed, result in a pulsar kick!

Sterile neutrinos leave the star without scattering. Hence, they give the pulsar a kick.

KIAS '05

KIAS '05

Active-sterile conversions in a neutron star

In matter, there is a potential V_m for ν_e , but not for ν_s :

$$V(\nu_s) = 0$$

$$V(\nu_e) = -V(\bar{\nu}_e) = V_0 (3 Y_e - 1 + 4 Y_{\nu_e})$$

$$V(\nu_{\mu,\tau}) = -V(\bar{\nu}_{\mu,\tau}) = V_0 (Y_e - 1 + 2 Y_{\nu_e})$$

The difference $V_m \equiv V(\nu_e) - V(\nu_s)$

Mixing angle in matter is different from vacuum:

$$\sin^{2} 2\theta_{m} = \frac{(\Delta m^{2}/2p)^{2} \sin^{2} 2\theta}{(\Delta m^{2}/2p)^{2} \sin^{2} 2\theta + (\Delta m^{2}/2p \cos 2\theta - V_{m})^{2}},$$
 (5)

$$V_m = \frac{G_F \rho}{\sqrt{2}m_n} (3Y_e - 1 + 4Y_{\nu_e} + 2Y_{\nu_\mu} + 2Y_{\nu_\tau})$$
(6)

$$\simeq (-0.2...+0.5)V_0,$$
 (7)

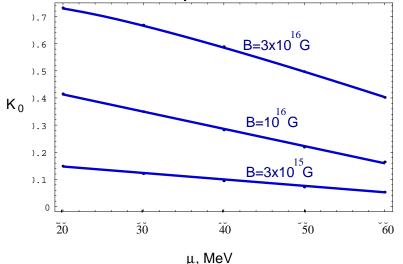
where $V_0 = G_{\!F} \rho / \sqrt{2} m_n \simeq 3.8 \text{eV}(\rho / 10^{14} \text{g cm}^{-3})$ Mixing is suppressed when $V_m \gg (\Delta m^2 / 2k)$. The coupling of ν_2 to weak currents is also suppressed, and $\sigma \propto \sin^2 \theta_m$. However, the matter potential can evolve on short time scales.

$$V_m = \frac{G_F \rho}{\sqrt{2}m_n} (3Y_e - 1 + 4Y_{\nu_e} + 2Y_{\nu_\mu} + 2Y_{\nu_\tau}). \tag{8}$$

$$\Rightarrow \text{Transitions } \mu \Rightarrow \mu \Rightarrow V \text{ decreases}$$

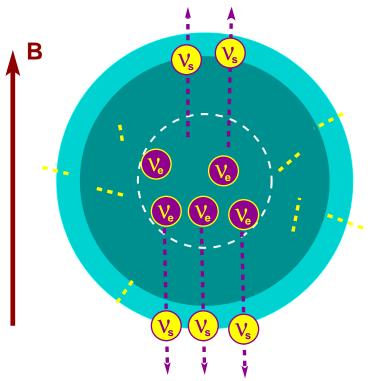
 $\begin{array}{ll} V_m > 0 & \Rightarrow \mbox{Transitions } \nu_e \rightarrow \nu_s & \Rightarrow V_m \mbox{ decreases} \\ V_m < 0 & \Rightarrow \mbox{Transitions } \bar{\nu}_e \rightarrow \nu_s & \Rightarrow V_m \mbox{ increases} \\ \mbox{Therefore,} & & & & & & & & & & & & \\ \end{array}$

 $V_m
ightarrow 0$


 $\sin heta_m
ightarrow \sin heta_0$

production of ν_s is unsuppressed

Electroweak processes (urca) producing neutrinos, including sterile neutrinos,


 $p + e^- \rightleftharpoons n + \nu_e$ and $n + e^+ \rightleftharpoons p + \bar{\nu}_e$

have asymmetry in the production cross section, depending on the spin orientation. In polarized medium, the asymmetry is of the order $0.4 \times k_0$:

The asymmetry in sterile neutrinos is not affected by rescattering. Sterile neutrinos escape

Sterile neutrinos leave the star without scattering. Hence, they give the pulsar a kick.

33

KIAS '05

If the fraction of energy emitted in sterile neutrinos is

$$r_{\mathcal{E}} = \left(rac{\mathcal{E}_{\mathrm{s}}}{\mathcal{E}_{\mathrm{tot}}}
ight) \sim 0.05 - 0.7,$$
 (9)

(as it can easily be), then the resulting momentum asymmetry is

$$\epsilon \sim 0.02 \left(\frac{k_0}{0.3}\right) \left(\frac{r_{\mathcal{E}}}{0.5}\right),$$
 (10)

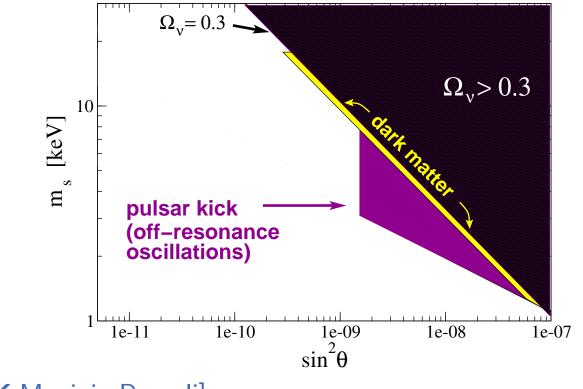
which is sufficient to explain the pulsar kick velocities.

Parameter range: need the equilibration of $V_m \rightarrow 0$ to occur faster than $\sim 1~{\rm s.}$

$$\tau_{V} \simeq \frac{V_{m}^{(0)}m_{n}}{\sqrt{2}G_{F}\rho} \left(\int d\Pi \frac{\sigma_{\nu}^{\text{urca}}}{e^{(\epsilon_{\nu}-\mu_{\nu})/T}+1} \langle P_{m}(\nu_{e} \rightarrow \nu_{s}) \rangle - \int d\Pi \frac{\sigma_{\bar{\nu}}^{\text{urca}}}{e^{(\epsilon_{\bar{\nu}}-\mu_{\bar{\nu}})/T}+1} \langle P_{m}(\bar{\nu}_{e} \rightarrow \bar{\nu}_{s}) \rangle \right)^{-1}, \quad (11)$$

where $d\Pi = (2\pi^2)^{-1}\epsilon_{\nu}^2 \ d\epsilon_{\nu}$, and $V_m^{(0)}$ is the initial value of the matter potential V_m .

[Abazajian, Fuller, Patel]


KIAS '05

$$\tau_{V}^{\text{on-res}} \simeq \frac{2^{5}\sqrt{2}\pi^{2}m_{n}}{G_{F}^{3}\rho} \frac{(V_{m}^{(0)})^{6}}{(\Delta m^{2})^{5}\sin 2\theta} \left(e^{\frac{\Delta m^{2}/2V_{m}^{(0)}-\mu}{T}}+1\right) \\ \sim \left(\frac{2\times10^{-9}\text{s}}{\sin 2\theta}\right) \left(\frac{10^{14}\frac{g}{cm^{3}}}{\rho}\right) \left(\frac{20\,\text{MeV}}{T}\right)^{6} \left(\frac{\Delta m^{2}}{10\,\text{keV}^{2}}\right)$$

$$\tau_{V}^{\text{off-res}} \simeq \frac{4\sqrt{2}\pi^{2}m_{n}}{G_{F}^{3}\rho} \frac{(V_{m}^{(0)})^{3}}{(\Delta m^{2})^{2}\sin^{2}2\theta} \frac{1}{\mu^{3}}$$
$$\sim \left(\frac{6\times10^{-9}\text{s}}{\sin^{2}2\theta}\right) \left(\frac{V_{m}^{(0)}}{0.1\text{eV}}\right)^{3} \left(\frac{50\text{MeV}}{\mu}\right)^{3} \left(\frac{10\text{keV}^{2}}{\Delta m^{2}}\right)^{2}.$$

[Fuller, **AK**, Mocioiu, Pascoli]

Allowed range of parameters (time scales, fraction of total energy emitted):

[Fuller, **AK**, Mocioiu, Pascoli]

KIAS '05

Resonant active-sterile neutrino conversions in matter

Matter potential:

$$V(\nu_{s}) = 0$$

$$V(\nu_{e}) = -V(\bar{\nu}_{e}) = V_{0} (3Y_{e} - 1 + 4Y_{\nu_{e}})$$

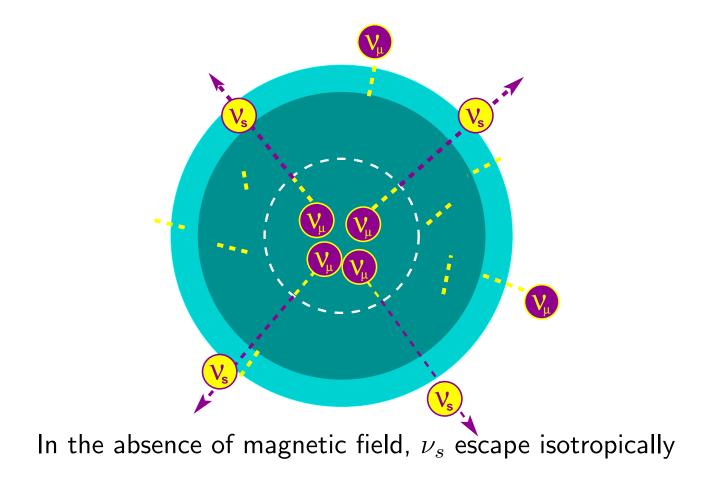
$$V(\nu_{\mu,\tau}) = -V(\bar{\nu}_{\mu,\tau}) = V_{0} (Y_{e} - 1 + 2Y_{\nu_{e}}) + c_{L}^{z} \frac{\vec{k} \cdot \vec{B}}{k}$$

$$c_{_L}^z=rac{eG_{_F}}{\sqrt{2}}\left(rac{3N_e}{\pi^4}
ight)^{1/3}$$

38

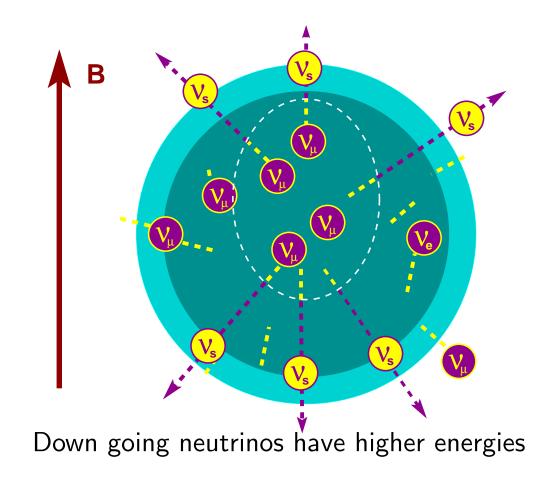
The resonance condition is

$$\frac{m_i^2}{2k} \cos 2\theta_{ij} + V(\nu_i) = \frac{m_j^2}{2k} \cos 2\theta_{ij} + V(\nu_j)$$
(12)

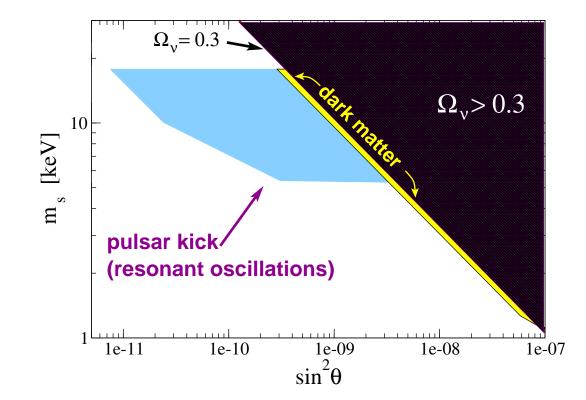

The resonance is affected by the magnetic field and occurs at different density depending on $\vec{k} \cdot \vec{B}$, that is depending on direction.

As a result, the active neutrinos convert to sterile neutrinos at different depths on different sides of the start.

Temperature is a function of r. The energy of an escaping sterile neutrino depends on the temperature of at the point it was produced.


KIAS '05

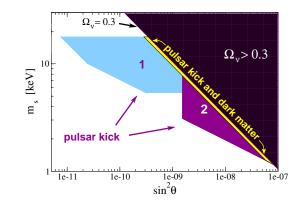
The magnetic field shifts the position of the resonance because of the $\frac{\vec{k} \cdot \vec{B}}{k}$ term in the potential:



KIAS '05

The magnetic field shifts the position of the resonance because of the $\frac{\vec{k} \cdot \vec{B}}{k}$ term in the potential:

The range of parameters [AK, Segrè; Fuller, **AK**, Mocioiu, Pascoli]:



Resonant (1,2) & off-resonant (3) emissions combined:

the pulsar kick regions overlap with the dark matter region

KIAS '05

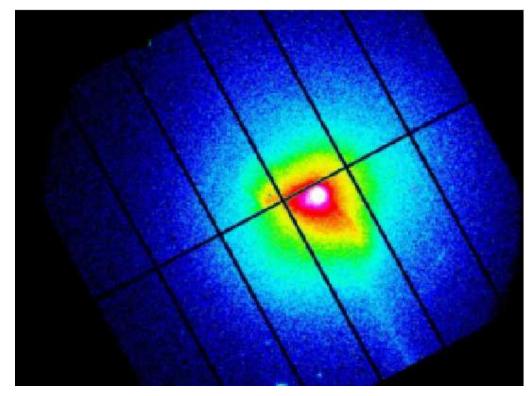
How "natural" is the mixing $\sin^2\theta \sim 10^{-8}$? Models of neutrino masses commonly predict:

$$\sin^2 heta\sim rac{m_1}{m_2}$$

for a heavy neutrnio with a $10 \text{ keV} = 10^4 \text{eV}$ mass and a light one with a 10^{-3}eV mass, this ratio is about right.

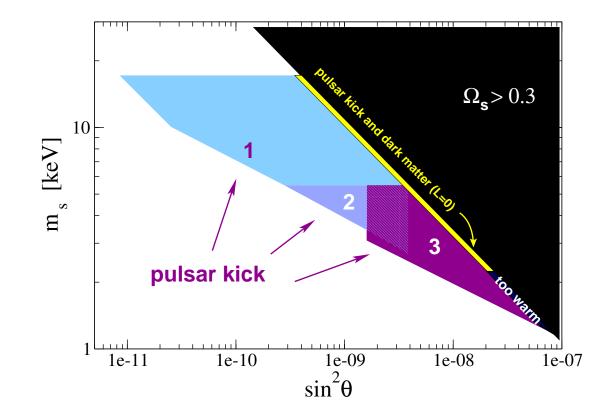
Pulsar kicks: why sterile neutrinos?

Why not ordinary active neutrinos?

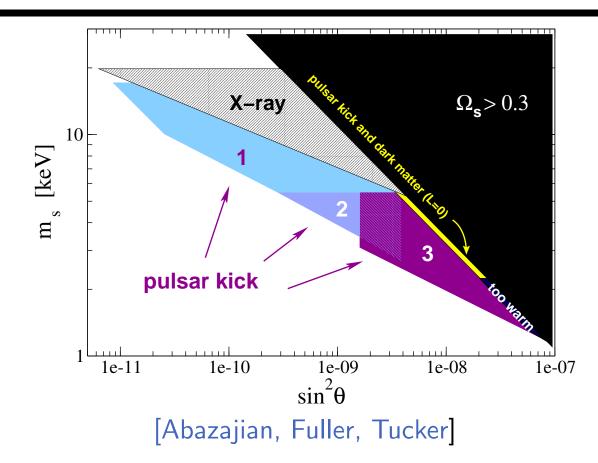

To get a pulsar kick out of $\nu_{\mu,\tau} \leftrightarrow \nu_e$ oscillations, one would require the resonant neutrino conversion to take place between the electron and τ neutrinospheres, at density $\rho \sim 10^{11} - 10^{12} \text{ g/cm}^3$. This density corresponds to

 $\left(\Delta m^2
ight)^{1/2}\sim 10^2\,{
m eV}$

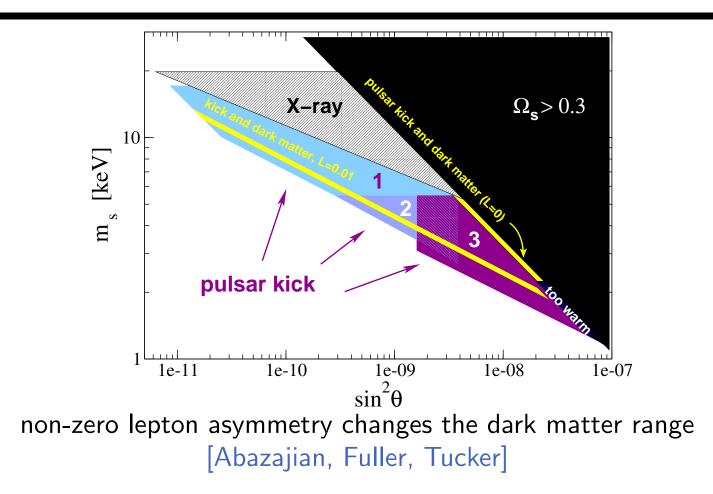
This is inconsistent with experimental/cosmological limits.


KIAS '05

Chandra, XMM-Newton can see keV photons.

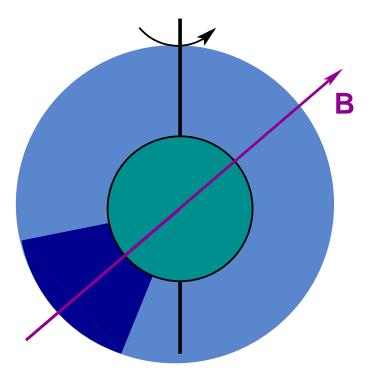


Virgo cluster image from XMM-Newton


Chandra, XMM-Newton can see photons: $u_s
ightarrow
u_e \gamma$

Chandra , XMM-Newton can see photons: $u_s
ightarrow
u_e \gamma$

Different cosmology, different limits



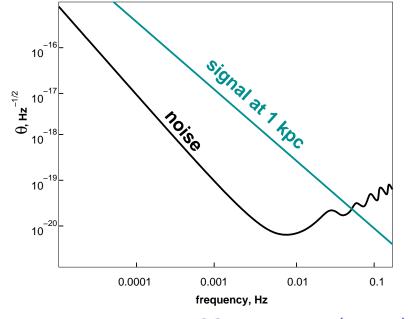
KIAS '05

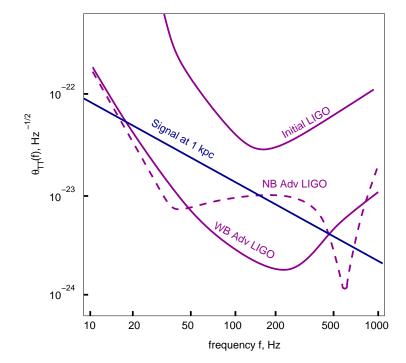
Gravity waves

Artist's conception by Roulet [Summer School lectures in Trieste] Rotating "beam" of neutrinos is the source of GW

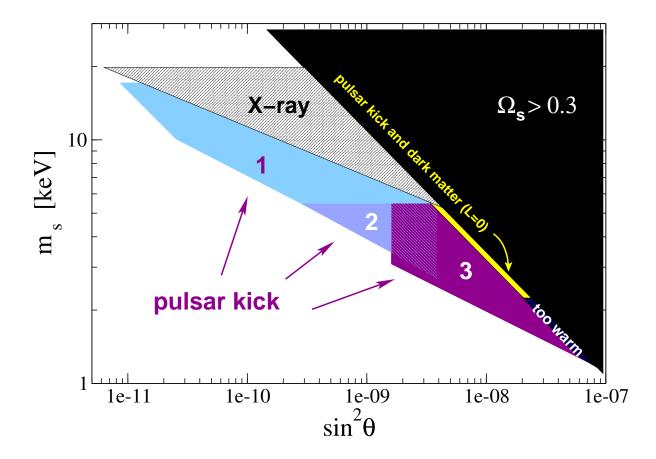


KIAS '05


Gravity waves


Artist's conception by Roulet [Summer School lectures in Trieste] Rotating "beam" of neutrinos is the source of GW

Gravity waves at LIGO and LISA


[Loveridge, PR D 69, 024008 (2004)]

- Sterile neutrinos in the 1-20 keV range can explain the observed pulsar kicks
- The same neutrino could be the dark matter
- Two puzzles from a single new particle
- Minimal extension of the Standard Model that is consistent with cosmology
- Can verify this mechanism through observations of X-rays from nearby clusters, or from gravity waves in the event of a nearby supernova.

Resonant (1,2) & off-resonant (3) emissions combined:

